The Many Benefits of Value Engineering

By | Blog | No Comments

Let’s face it, most companies could stand to operate in a stronger, more effective manner. Be it time wasted in meetings or too many resources used, these mistakes can be costly.

In the construction world, value engineering is a great way to combat that waste. Created during World War II by General Electric, this process is all about helping businesses become more efficient.

And if you’re a contractor, there’s one universal truth: your process could be more efficient. And what does efficiency lead to? More money.

Read on to learn why it’s time to invest in value engineering services.

Value Engineering Advantages

Bidding & Value Engineering

While faster timelines and teamwork are great (we will dive into that later on), let’s first focus on the overall goal here: profits. And by investing in value engineering services, you’ll ensure that your company is adding more to the bottom line than ever before.

A revelation to many companies is that value engineering is not just achieved during the project, but it can be even more effective before bid time.  It’s shocking to see how many companies wade into a bid simply winging it: “Sure, that beam is probably big enough for that wall”, or even better “Yeah, we should be able to get away with only one crane for that critical lift.”

Wouldn’t it be nice to know what it will actually take to build your project before you bid it?  Two outcomes will be achieved in this exercise.  First, no cost surprises during construction – raise your hand if you ever “won” a bid you wish you would have lost! Second, increased bid winning percentages – bid confidently knowing you can build the project faster and cheaper than your competition, no more “padding” necessary.

“But if I lose the bid, how am I supposed to account for the engineering costs?”  This is the line in the sand that separates the sophisticated contractors from everyone else, and where we need to think about the big picture.

The smart contractor will look at the cost of value engineering in the bidding phase as an expense, not as a cost of goods sold (COGS).  Trying not to go into an accounting lesson here, but an expense is just like any other general or administrative cost such as paper or pens for the office.  COGS are actual project costs like materials and field labor. Why is this distinction important?

Smart contractors expense the value engineering because they know that they will not win every bid.  They set an annual budget for it and spread this expense into their overhead. They do this knowing that they will get a far greater return than this amount over the course of an entire year. A recent client example looked something like this:

  • – $ 25,000 engineering investment
  • + $100,000 annual project cost savings
  • = $ 75,000 annual net profit (300% ROI)

Does an investment that yields 300% seem like something you want? I’ll assume so given the fact the most recent interest rate on a “high yield” savings account is 1.15%.

Conversely, other contractors instead look only at the immediate result, and view the up-front engineering cost as COGS. “I spent $2,000 on pre-bid engineering and I lost the project, now I just have to eat it. I’m never doing that again!”

Think of the absurdity of that statement.  Imagine yourself walking into Caesars Palace, winning a bet, and then Caesars abruptly shuts down the casino. Crazy, right?  A Casino will never do this because they know over the long run, they will win that money back – and then some. Losing even 100 bets means nothing because they will win 110 bets back!

Similarly, companies in the ENR Top 50 don’t stop spending money on pre-project engineering because they lose some bids here and there. Instead they forge ahead knowing that over the long run, they will have a great return on their investment!   

The choice here is what type of contractor do you want to be?  Great contractors, and great companies for that matter, think about the long run and focus on the big picture.  Big picture focus = big profits. 

Overall Scheduling Outlook

Worried about how adding engineering services could impact your schedule?  Don’t be.  One of the key performance metrics that is reduced by value engineering is overall project duration.

If the engineering takes two weeks to complete but shaves four weeks off your schedule – this is a win for you and your project.

The trick is to not focus on the immediate schedule impact – think in the long-term when evaluating your options. Just as mentioned before, you must focus on the big picture.

Your Clients Get a Better Result

Construction is ultimately about creating what the client has envisioned. Focused value engineering will by definition provide your client with the same outcome for lesser cost. Depending on contractual obligations, the contractor may pass on or keep the savings.

From a customer service perspective, owners always appreciate the contractor who is considerate and mindful of their specific needs.  Building owners will be much happier with the result if you provide them with a value engineered structure that minimizes maintenance costs.  Modest value changes such as adding some additional cheap roof anchors can save them tens of thousands of dollars over the life of the building in window washing costs.

Simply presenting your client with value options will ensure them that you are constantly focused on their best interests. 

Your Team Will Come Together

Value engineering can be a team building experience. Bringing the project group together to solve a complex problem will galvanize relationships. You will also find out who your superstars are as the best members of your team will rise when presented the challenge.

By the end of your value engineering experience, your team will be stronger and morale will be higher.

Start Saving Money Today

Ready to take the next step from simply being good, to instead being great? We would love the opportunity to help take you to that next level.

Get in touch today to learn how you can leverage all the value engineering services DH Glabe & Associates has to offer.

OSHA Update: Walking Working Surface Regulations

By | Blog, Facade Access, Fall Protection, OSHA Standards & Regulations | No Comments

Earlier this year, OSHA made headlines for the way it would revise the regulations regarding fall protection for general industry.

Did you know about the change?

As explained by the department itself, the modification accounts for modernization of technology along with updates to old regulations.

It’s important that building owners and managers understand the new developments. If you don’t, you could be facing fines from the government – or worse, accidents at your property with increased legal liability. 

There are several subtle changes in the regulations that have large implications.  Specifically, the changes in fall protection for facade access and building maintenance could potentially be costly for building owners.

Here’s what you need to know.

Standards for Window Washing & Exterior Maintenance

You’re probably aware of the complicated protocol that already exists around suspended scaffolding systems.

Now, a few new rules have been tossed into the mix for General Industry. OSHA has basically adopted various ANSI, ASME, and IWCA standards that were loosely followed in the past.  These are now law with clearly defined minimum requirements. 

The most important example is the minimum load any rope descent (i.e. boatswain or bosun’s chair) anchorage must now support. Prior to this update, a minimum of two to one safety factor was allowed (typically resulting in an anchor that could support around 1800 pounds). Now, ALL anchorages must be able to hold 5,000 pounds minimum.

Height standards are also changing for rope descent systems. No rope descent system can be anchored 300 feet above the base of a building barring some sort of extraordinary circumstance. Owners of buildings above this threshold will now have to accommodate the switch to powered platforms for window washing.

The ANSI/IWCA I-14 standard was widely considered the industry standard regarding anchorage testing and inspection. OSHA has now adopted the intent of this standard into the 1910.27 regulation. Building owners are now required to have their roof anchorages load tested upon installation, inspected annually, and load tested again every ten years.

The key takeaway from these changes is that OSHA is shifting much of the safety burden onto building owners and away from contractors.  Building owners are now REQUIRED to provide and have written certification that their anchorages meet the new standards.  Gone are the days where contractors could provide temporary anchorages to aid in window washing and exterior maintenance. 

Deadlines for Implementation

The new regulations for rope descent can be costly as mentioned, but OSHA is not allowing much time for building owners to get up to speed. There are no “grandfather” type exceptions in the regulation, just a set deadline of November 20, 2017 to comply.

What does it mean if your building is not ready by then?

To put it simply, you will not be allowed to legally wash your windows or undergo exterior maintenance work until it is. There are options such as boom lifts for lucky building owners that have properties accessible from the ground, but any type of rope descent access that requires overhead suspension is not allowed.

Penalties for Accidents

There are no new fines that have been introduced as part of this new OSHA regulation overhaul. Keep in mind though that OSHA already approximately doubled fines towards the end of 2015.   

Fines however, could be the least of one’s worries. As most building owners already know, potential legal damages in the event of a serious accident would far exceed any fines OSHA could levy. Throw a non-compliant building into the case, and the liability skyrockets. 

A Good Thing?

Those who will face the immediate brunt of these costs will certainly disagree that this is good change in the short run.  However, the new regulations have many benefits:

  1. Standardization of many loosely followed standards into one clear-cut law;
  2. Increased protection for workers. With permanent exterior maintenance systems now mandated, the potential for falls decreases;
  3. No more guessing – workers now know for certain whether the anchorages their lives depend on are safe for use;
  4. Long term savings in risk premiums as accidents are mitigated.

Regardless if this OSHA update benefits you or not, it is important that you understand it like the back of your hand.

Update Your Facade Access System Now

Dirty windows can make for cranky tenants. The sun’s harmful UV rays continuously pound building exteriors. If you are unable to wash windows or provide exterior maintenance against weathering, your building is in trouble.

The team at DH Glabe & Associates has the expertise to get your building compliant in the most cost-effective manner possible.

Feel free to reach out to someone on our team today to learn how we can help you.

FEA: The Next Best Stress Analysis

By | Blog, FEA, Finite Element Analysis | No Comments

The future of stress analysis has actually been around for over 60 years!

Finite Element Analysis (FEA), also known as Finite Element Method (FEM) is being used in the most modern applications, but the methodology has been effective for over half of a century.

What can it do for your company? Keep reading to get a brief overview.

What Is Finite Element Analysis (FEA)?

In a nutshell, the finite element analysis is a numerical method for solving problems in engineering and mathematical physics. It measures how a design will respond to weight, pressure and stress. Will it bend, break, or hold?

It’s best used when analyzing problems involving complicated geometry, loads, and material properties when analytical solutions can’t be obtained.

An analytical solution will do a stress analysis for trusses or beams, with mass concentrated on the center of gravity. Whereas FEA helps with more complex design geography.

It can help you understand:

  • The strength, heat transfer capability and fluid flow of complex objects
  • The performance and behavior of a complex design
  • The strengths and weaknesses of the design

The History of Finite Element Analysis

It can be traced as far back as A. Hrennikoff and R. Courant in the early 1940s, who used the methods of elasticity and structural analysis for aeronautical engineering.

Then in the late 50s and early 60s, China’s K. Feng used it for analysis of dam construction.

Today, the fundamentals are still one of the most reliable methods of stress analysis, trusted by people across the world.

According to Andres Gameros, “This analytical methodology has been used since the 1960s. In the years since its first use, Finite Element Analysis has grown and developed into a standard of design engineering worldwide.”

FEA has ushered in several commercial software packages which are used around the world, including Solidworks and LUSAS amongst many.

The Real World Uses for This Form of Stress Analysis

Today, this type of stress analysis is being used in:

  • Aircraft like the Boeing 787-9 Dreamliner
  • Complex bridge design
  • Some of the world’s biggest brands including General Motors (GM), Faraday Future, and Siemens
  • The oil industry
  • Aerospace engineering
  • High-end construction
  • Biomedical research and the textiles

As Autodesk’s Vikram Vedantham explained, “Structural FEA has the capability to influence engineering at multiple levels – from mainstream solutions that provide trends and insights to guide product development, to high-end solutions that aim to match real-world data.”

He added, “Picking features and capabilities is determined by the time of use, the persona involved, the level of depth, the geometry, the nature of the design, its use case and the size of the firm.”

So how does one pick a firm to take care of their FEA or any other type of stress analysis? Choose the firm with proven expertise, as well as a combined 5,500 projects, 32 years of combined experience and 54 combined professional licenses.

To learn more about how we can help you, please feel free to contact us.

Hanging Out

By | Blog, Resources, Scaffolding | No Comments

The suspension rope supporting a temporary platform is the single most important element of a suspended scaffold. You may not agree with this—too bad for you. What if the rope breaks? The platform can only go down and if you are at a considerable height, the result will be mostly unpleasant. Understanding this suggests that we should probably be sensitive to the condition of the rope to which we trust our lives.

What is a rope? A typical definition describes a rope as a cord that consists of twisted strands of material, such as hemp or wire. Of course, that begs the question of what cords and strands are. For that matter what is hemp? Can you smoke it? Perhaps not. How about this: a rope is a bunch of string or thread twisted together to make a bundle that can hold some weight. In the case of suspended scaffolds, the strings are normally wire although other materials such as hemp and polypropylene can be used, depending on the application.

Rope has been around just about forever. Evidence of rope’s use shows up in ancient Asia and Egypt. Wire ropes were invented about 1831 or so by Wilhelm Albert, a German involved with mining. He sought a solution to the very real problem of using chains where the failure of one link meant the failure of the whole chain. By twisting individual wires/strings into small bundles (strands) and then twisting the strands into a rope, (a big bundle), any defects are spread over more components, thus avoiding the problem of the weak link.

The industrial revolution encouraged rapid development of wire rope technology and the use of wire rope continued to increase. In 1841, John A. Roebling, designer and constructor of the Brooklyn Bridge, began manufacturing wire rope in America. Continued research and development discovered that more wires in the rope offered more flexibility and in 1884, researcher Tom Seale developed the parallel strand, where he used different diameter strands to make the rope. Figure 1 illustrates the Seale design.

While iron wire was initially used for metal ropes, steel wire began to be used in the late 1800’s. In fact, steel wire rope was first used in the construction of the Brooklyn Bridge in New York; the main ropes are still in use, demonstrating the durability and longevity of wire ropes. Over time, other wire rope designs have appeared, including the Filler strand, the Warrington strand and the Lang lay rope. Each design has its advantages and the job requirements will dictate the choice.

Wire rope is strong stuff, especially considering its relative light weight. Wire rope load capacity is governed by the rope material, configuration and diameter. While wire rope is available in an almost infinite number of diameters, normal diameters for suspended scaffolds are 5/16 or 3/8 inches. By its nature, rope can only handle tensile loads (you can’t push a rope!). However, the great advantage of a rope is that it can still handle the rated load whether the rope is 5 feet or 500 feet long. Within limits, that means the rope can hang down a 300-foot tall building and still support the same load as the rope will on a 50-foot tall building.

Adjustable suspended scaffolds typically use drum hoists or traction hoists. Drum hoists wind the wire rope on a drum or spool attached to the scaffold platform while a traction hoist passes the rope through the machine. Consequently, a drum hoist and rigging must support the weight of the wire rope while a traction hoist does not.
As with all materials, wire rope, while rather durable, can be damaged by improper handling and use and can also just wear out through continued use. Consequently, suspended scaffold erectors, and users, must be adequately trained in the potential hazards. For example, erectors must know how to handle the wire rope, including how to pay out the rope and how to wind it back up at the end of the job. The rope must be installed so the bottom end of the rope can hang free.

The attachment of the rope to its anchor is obviously critical to the strength of the suspension system. At a minimum, when loops in a rope are being made, a thimble and three fist grips (no u-bolts please) must be used, spaced at the manufacturer’s recommendations. The bolts must be tightened in compliance with the manufacturer’s recommendations; they must be re-tightened after the first loading of the suspension system, and then typically every day after that. The entire scaffold system including the suspension rope, must be inspected prior to each workshift. Properly trained suspended scaffold operators will know to inspect the suspension wire ropes every time the platform is raised or lowered to ensure that the rope is still in useable condition. It is rather undesirable to get the rope stuck in the traction hoist when 100 feet in the air. Even less desirable is having the suspension rope break when 100 feet in the air!

Suspended scaffolds get some impressive media coverage when failures occur since the incident leaves workers dangling high above the street below. Reporters nervously describe the precarious (and assume a dangerous) situation, leading the uninformed observer to believe that these devices are incredibly unsafe and a peril to the users. Since wire ropes on properly designed scaffolds can support six times the expected load, when the scaffold fails, it isn’t because the equipment is hazardous, but rather it is because somebody just plain screwed up. Don’t you be one of them!

5 Essential Facts About Facade Access Design

By | Blog, Facade Access, Fall Protection | No Comments

Facade design is an important aspect of any building project, but that doesn’t mean simply considering what the exterior of the finished building will look like.

Facade access design is an essential consideration. A good system will allow for maintenance to take place safely and at a reasonable cost. Maintenance operations can include setting up advertising, cleaning windows, fixing damage and more.

Here are five essential things you need to know about facade access design.

There are temporary solutions…

Temporary solutions for facade access include rope descent systems and hydraulic access platforms.

While these are relatively low-cost solutions, they have their drawbacks too. For example, a hydraulic lift will not reach the highest floors of a tall building, while rope descent work can take quite a long time.

… and permanent solutions

To secure a re-usable solution, a range of systems including monorail cradles or fixed davits might be favored depending on the jurisdiction (California, New York and other states have their own set of specific regulations).

Monorail cradles are useful on large flat or curved surfaces – they travel along a rail at the top of the building and can be lowered to the required level for access to the facade. They may not be appropriate to use for more ‘experimental’ facade designs.

For flat surfaces with less width, a fixed davit may be more cost-effective than a monorail cradle. Fixed davits are single arms which sit in one position and are used to raise and lower a maintenance platform.

Whichever of the two solutions you opt for, permanent or temporary, you will need to ensure that there is also a fall protection system to protect the people who are working on the facade.

Equipment needs to be inspected regularly

Just as facades need to be accessible, so does your facade access system so that it can be inspected and tested for safety at regular intervals.

OSHA 1910.66 states that all permanent equipment used to access a facade must be load tested when installed, and visually inspected every year. Additionally, OSHA 1910.27 states that each anchorages must be inspected annually and re-tested every 10 years.

Novel facade design calls for a novel approach

As modern architects create buildings with new and artistic facades, it’s important to think about how the facade will be accessible for maintenance purposes.

Sometimes, this will require an approach which is slightly different from the norm. This must be considered at an early stage of the project.

If the architect’s vision for facade design would result in a building which causes problems for facade access, there may have to be a compromise – or a novel approach.

It’s always good to get a second opinion

Our facade access design consultancy services allow building owners and architects to take advantage of our expert knowledge to create facade access designs that are safe and cost-effective.

We provide turnkey structural design and engineering solutions for new buildings, and can also help retrofit existing buildings to bring them up to code.  Contact Us today to find out how we can help with your façade access project.