COMMITTED TO SAFETY AND VALUE ENGINEERING - SINCE 1985
Tag

OSHA Archives | DH Glabe & Associates

All About Facade Access

By | Blog, Facade Access | No Comments

Industrial climbers are washing glass on the facade of a skyscrapeWhat Is Facade Access?

Facade access is a vital part of facilities maintenance & construction as it allows for the safe access to the exterior of a building. Facade access consultants design safe operations procedures and equipment for window washing, building envelope maintenance, and even initial construction. Due to OSHA and CalOSHA standards, all facade access systems must be engineered to certain specifications.

What Is Facade Access Consulting?

Facade access consultants ensure that all portions of the exterior can be accessed safely. This includes the design and testing of all structural components of a facade access system including davit pedestals, bases, monorails, fall protection anchors, tie-back anchors, trolleys, and any other structural element permanently attached to the building.

Facade access consultants ensure that the building is not only safe, but that it meets the code requirements for the particular region it is in. For example, the laws in California are much different than those in Florida. The facade access consultant ensures that these codes are taken into account when designing or testing access equipment.

An experienced consultant will also recognize how to make building access safe, while being mindful of installation cost. Consultants act as third-party representatives for owners, and therefore have no monetary incentive to “over-design” a building to outfit it with too much unnecessary equipment.

Testing and Re-Testing Intervals

Selecting and installing facade access systems is 75% of the battle. The true test of whether or not the installation was successful or not is discovered during the proof testing of the system. According to OSHA 1910.27 & 1910.66, all permanently mounted facade access equipment must be load tested when it is initially installed. This includes davits and anchors. Additionally, this equipment must be periodically re-tested to ensure safety. A Qualified Person must re-test the equipment every 10 years according to OSHA 1910.27, ANSI/IWCA I-14.1-2001, and ASME A120.1-2014.

The difference between a Qualified Person and a Competent Person is stark. According to OSHA, “a competent person must have authority to take prompt measures to eliminate hazards at the work site and have the experience to be capable of identifying these hazards…. a qualified person must have a recognized degree, certificate, etc., or extensive experience and ability to solve the subject problems, at the worksite.” Generally, a qualified person is required to certify a facade access system.

Determining Which Facade Access Consultant To Hire

The safety of your workers is paramount, and should not go to the lowest bidder. Paying slightly more for an experienced consultant will save you thousands in unnecessary equipment costs. When looking for a qualified engineering firm to handle your facade access systems and davit anchor needs, select a firm that has a broad range of experience with multiple types systems. Your firm should have a proven track record with a wide variety of clients — possessing knowledge on many different projects allows them to chose the best solution for your needs.

 

Choosing the Correct Fall Protection System

By | Blog, Fall Protection | No Comments

While the construction and engineering industry does come with a certain amount of inherent risk, contractors can be proactive about safety on projects. OSHA sets strict guidelines regarding fall protection measures because falls are commonly responsible for serious workplace-related injuries and deaths. The National Safety Council finds that falls from height are the reason for the most non-fatal days of missed work. Keeping this in mind, contractors and engineers should ensure that all employees receive regular preventative training. Additionally, when working from any height, workers should be provided with the appropriate fall protection system.

Read More

Pop Quiz: 30 Questions About Scaffolding

By | Blog, OSHA Standards & Regulations, Scaffold Bracing, Scaffold Components, Scaffolding, Scaffolding Planks, Scaffolding Platforms | No Comments

CAN YOU ANSWER THIS?

It is somewhat surprising how creative workers can get when it involves scaffolding.  Just when it seems all the questions have been answered, along comes a question that raises an issue that was never addressed.  Challenge yourself to these questions and see if your answer agrees with the one given at the end of this article.

Read More

How Construction Engineering Can Benefit Contractors

By | Blog | No Comments

construction-engineering-benefitsConstruction Engineering – The Basics

Construction engineers are key players in promoting the successful implementation of any project worth its time and expense. They work with contractors to identify project challenges, provide value engineering, and ensure safety. Their primary focus is to provide effective solutions without sacrificing the functionality of the final product. Essentially, construction engineers deliver labor, equipment, and materials savings to contractors by employing efficient construction methods to optimize constructability without sacrificing safety.
Read More

Scaffolding Scores High – Unfortunately!

By | OSHA Standards & Regulations, Resources, Scaffolding | No Comments

Once again, scaffolding has shown its ability to frequently receive OSHA citations!  In fact, it shows up in the number three spot on the famous “OSHA’s 2014 TOP TEN Most Frequently Cited Violations” list.  (See Figure 1) According to OSHA, there were 4,543 scaffold violations: that’s about 17 every workday.  Unfortunately, it is unclear as to the breakdown of the citations; which hazard does each citation specifically address.  (Note that Fall Protection still holds the number one position with 7,170 citations, about 27 per workday.  Again, it is unclear what type of fall hazard existed that warranted a citation.)

How about having some fun with statistics?  While 17 scaffold violations per day is significant, it is worth comparing the 17 violations per day to the number of workplaces and workers in the construction industry.  According to OSHA, there were 89,664 inspections in 2013, about 345 each work day across the United States and its territories.  That works out to approximately six per state/territory each day.  Depending on the population of the state where you do business, this may or may not have you concerned.  Since there are 8 million worksites containing 130 million workers, the odds of having an inspection at least once in a year is one percent.  Does that mean that for every scaffold the same odds exist?  Yes and no.

Not every worksite has a scaffold so those sites should be excluded from the count.  And since the 8 million worksites include construction, manufacturing, retail and a zillion other worksites, an adjustment needs to be made if only the construction sector is to be considered.  So, as an example, let’s assume (guess might be a better word) that twenty percent of the work sites are construction related and that seventy five per cent of those construction sites have scaffolding.  That means that there are 1.6 million construction projects and that 1.2 million have scaffolds.  Obviously the scaffolds will vary in size based on the scope of each project.  While on one site only a small rolling tower may exist, on another site a scaffold 150 feet tall may have been constructed.  For argument’s sake, let’s argue that on average each site has a supported scaffold that is 7 tiers high and 100 feet long.  (Of course any of these projects could have aerial work platforms and/or suspended scaffolds but these scaffolds will not be considered for this example.)  Depending on the equipment being used, the scaffold could have more than 1,000 components.  This would then mean that there could be 1,000 problems which in turn have the potential of creating 1,000 citations.  Since we assumed that there are 1.2 million jobs with scaffolds, and each job has 1,000 scaffold components and potentially 1,000 violations, there are then 1,200,000,000 (that’s 1 billion, 200 million) possible violations looking for citations.  This number suggests that since there were only 4,543 citations, either the compliance officers aren’t doing a very good job or only 0.0004 % (that’s four-ten thousandths) of scaffolds had problems.  Since OSHA compliance officers do a good job, it can only be concluded the industry is doing a superb job of constructing and using scaffolding since 99.99962% are flawless!

Although one could reasonably assume that there may be a flaw or two in this analysis example, the fact still remains that the overwhelming majority of scaffolds are constructed properly.  Therefore it is time to step back and consider whether the present method of measuring safety is accurate since it is well known that accurate measurement is critical if the root cause of scaffold accidents is to be determined.  Furthermore, how can full safety be achieved if the problem isn’t understood?

Historically, scaffolds have been considered to be dangerous and downright life threatening.  This perception assuredly contradicts the evidence:  How can scaffolds be dangerous if 99.999% of scaffolds are constructed without flaws?  Furthermore, how can scaffolds be dangerous if each scaffold is designed and constructed properly?  A properly designed and constructed scaffold has no hazards.  And please, don’t tell me that you can still fall off a properly constructed scaffold.  A properly constructed scaffold won’t let you fall off—you’ll have to jump.

On the surface, the “OSHA Top Ten” continually paints a bleak picture for scaffold safety.  But this analysis shows that it is just not true.  Unfortunately the statistics are taken at face value without considering the bigger picture.  While any violation is undesirable, it doesn’t necessarily indicate a serious flaw in the scaffold industry.  And finally, the Top Ten list only indicates the number of citations written, not an accurate count of the citations that ultimately remained and accepted by the employer.  Nor does the list indicate the severity of the violations.  Frankly the only conclusion that can be made is this:  Scaffolding shows up on the OSHA Top Ten list—so what.  The list is meaningless in that it fails to truly indicate the safety or menace of scaffolding.  On the contrary it misleads and thus wastes the efforts of those who are assigned the task of evaluating jobsite safety.  It would be better to not have the list.  Think about it.

OSHA TOP 10 MOST SERIOUS VIOLATIONS

1.     Fall protection  (c)
2.     Hazard communication
3.     Scaffolding  (c)
4.     Respiratory protection
5.     Ladders  (c)
6.     Powered industrial trucks
7.     Lockout/tagout
8.     Wiring methods
9.     Machine guarding
10.  Electrical: systems design

C = Construction standard
Figure 1

Source:  www.osha.gov

Are You Stable?

By | Resources, Scaffolding | No Comments

Tarps and other enclosure materials, such as plastic sheeting, are typical materials used to create a desirable work atmosphere.  Many scaffolds are enclosed in screening and debris netting—I recall one resort project in Aruba where the scaffold was wrapped in a mesh to ensure, so I was told, that construction debris would not blow into the adjacent swimming pool.  In reality it was there so the guests below couldn’t see the less than productive construction workers staring at them!  And, of course, now that outdoor temperatures in North America are slowly falling, thoughts of a cozy work environment on a supported scaffold become more frequent, resulting in more scaffolds being wrapped in some type of enclosure so that work can continue.  It is interesting that wrapped scaffolding has been frequently discussed and written about and yet each year scaffolds fall over because somebody wrapped the scaffold without giving much thought to the effects that the enclosure would have on the stability of the scaffold.  Of course, one of the keys to a successfully constructed scaffold is making sure that the scaffold doesn’t fall over; this is especially important for the individuals who happen to be using the scaffold!

The concept of stability is straightforward:  The forces that want to knock the scaffold over have to be resisted.  How can this be done?  While there may be a number of methods that can be used, there are three that are most commonly used by scaffolding designers and erectors:: tying the scaffold to another strong structure that can resist the forces; guying the scaffold tower to a suitable anchor that can resist the forces, and; making the scaffold large enough so the size and weight of the scaffold are adequate to keep the scaffold from falling over.  Since the stability of asupported scaffold is desirable, standards and regulations have been written to address the issue.  The U.S. Federal Occupational Safety & Health Administration, OSHA, requires that “Supported scaffolds with a height to base width ratio of more than four to one (4:1) shall be restrained from tipping by guying, tying, bracing, or equivalent means….” [29 CFR 1926.451(c)(1)]  The standard goes on to require that when the scaffold is tied to an existing structure, it has to be tied at a frequency of no more than 30 feet horizontally and 26 feet vertically for scaffolds wider than 3 feet, and 20 feet vertically for scaffolds 3 feet and narrower.  (In California the requirements are more restrictive.)

Unfortunately, this regulation can be very misleading for the simple reason that it doesn’t address varying field conditions.  Keeping in mind that the OSHA scaffolding standards are minimum requirements and not directions or instructions, the qualified person who designs the scaffold shall determine the proper means and methods for ensuring the stability of a scaffold.  Also keep in mind that a qualified person will not guess at what is required to ensure scaffold stability.  Unfortunately, the reality is that too many scaffold erectors and users think that experience is a great method for determining what it will take to keep the scaffold from falling over.  While the OSHA mandated requirements may work for a scaffold not wrapped in plastic, the same tying requirements will be woefully inadequate for a scaffold wrapped in a tarp and subjected to a violent winter storm.  (Lucky for many wrappers, the enclosure material rips into pieces and blows off before the scaffold is yanked from its’ moorings!)  When a scaffold is wrapped in a quality enclosure, that is a netting or enclosure that is resistant to tearing, the scaffold instead will rip, bend and ultimately fail.

Interestingly, #9 wire is often used to secure a scaffold to a structure.  While this can work with an open scaffold design, it very rarely is adequate for a wrapped scaffold, even if the ties are “doubled up.”  Remember, guessing never has worked well as a substitution for a properly designed and erected scaffold.

So, what is the worker to do?  The answer is easy, logical, and in compliance with the applicable standards and good scaffolding engineering practice.  Have a Qualified Person design the scaffold.  In the case of a wrapped/enclosed scaffold, it will probably take the skills and expertise of a Qualified Professional Engineer who can design the scaffold for the anticipated forces at the specific scaffold location and for the specific time of year that the scaffold will be exposed to external forces from the wind and other environmental conditions.

If you think that you are qualified to design an enclosed scaffold answer yes or no to these statements.  (If you answer no to any of them, you are not qualified to design an enclosed scaffold):

I know where to find the information that tells me what the design wind loads are for my scaffold location;

I am familiar with the American Society of Civil Engineers (ASCE) Standard, Minimum Design Loads for Buildings and Other Structures wind loading criteria;

I know the strength of #9 wire and why it shouldn’t be used for wrapped scaffolds;

I can calculate the forces that are a result of a 100 mph breeze;

I know how to calculate overturning moments and forces due to pressures;

I know what the effects of a partially wrapped scaffold are;

I know what happens if the windows are open;

I know what effects a building corner or roof has on a wrapped scaffold;

I know my limitations.

How Well Are You Connected?

By | Resources, Scaffolding | No Comments

Connections play a big part in the proper erection of a scaffold. Knowing how connections work, which products to use, and their strengths are important for both erectors and users.

Being well-connected may suggest that you have a strong bond with another person or at least you may have influence over another person’s behavior and action. Unfortunately, this article is not about that type of connection-you’ll have to go somewhere else for advice on being personally well-connected. But what about your scaffold; is your scaffold well connected? And what kind of connections are we talking about?

There are all kinds of connections found in scaffolding. In engineering terms, there are shear connections, tension connections, compression connections, moment connections, and bearing connections. These connections can be provided by bolts, nails, screws, wire, welds, glue, adhesives, tape, bubble gum, string, wire rope, friction devices, u-bolts, swaged fittings, fist-grips, expansion anchors, coupling pins, retainer pins, studs, rivets and bungee cords. Well bubble gum might be a reach but the rest are legitimate; the choice of connection depends on the required strength of the connection and the application. For example, using string to attach a frame scaffold to a building will only provide a tension tie (it works only for pulling, not pushing) and the string probably does not have the required strength. On the other hand, you could weld the same scaffold to the structure but then the weld would have to be cut when the scaffold is dismantled-probably not a good choice for this application.

Myths are pervasive in the scaffold business and often include connections. Can wire, specifically # 9, 10 or 12 gauge wire be used for connections? Do we need high strength bolts for everything scaffold related? Can I use duct tape? Are friction connections bad? And can I hang a supported scaffold by its coupling pin? The easy answers, in order, are: Maybe, maybe, doubtful, no, and perhaps.

Let’s start by looking at the issue surrounding the use of wire. Wire is often used to provide a connection between a supported scaffold and a structure to provide stability so the scaffold doesn’t fall over. While the federal Occupational Safety & Health Administration, OSHA, specifies that supported scaffolds be tied to a structure at certain intervals, it does not specify the strength. Therefore, anything can be used, including wire, string and duct tape, provided it is sufficiently strong. On the other hand, California OSHA, (CalOSHA), allows the use of #10 or double wrapped #12 wire to connect the scaffold to the structure. This is an interesting concept since it assumes that these size wires are adequately strong regardless of the circumstances; this is a bad approach since wrapping the scaffold with enclosure material will probably overload the wire connection. In another common application, scaffolders frequently want to secure a scaffold leg to a coupling pin using #9 wire in place of a retainer pin. This could be a bad idea since the wire may not be able to handle the shear (karate chop) load.

Clamps/couplers are commonly used with supported scaffolds, providing a rigid or swivel connection between two tubes. The clamps primarily rely on friction to provide the connection and there are those (whoever those are) that say this is bad—you should never rely on friction for the connection. They (whoever “they” are) apparently don’t realize that they (same folks) rely on friction to walk, drive, stop, sit, or eat. In spite of the “friction myth,” scaffold clamps work because trained scaffold erectors understand that the clamp has to be properly tightened to ensure a proper connection.

And what about the myth of high strength bolts? I have no idea where this myth started but for some reason everyone (whoever “everyone” is) thinks that only high strength bolts can be used for scaffold connections. Sure, if a high strength bolt is used as a connection on an aerial lift, for example, then you better replace it with the correct high strength bolt. But, come on, regular everyday bolts work for many applications. If you want to use high strength bolts everywhere that’s fine with me; just don’t tell me it’s required.
And what about that coupling pin/connector that aligns one scaffold leg on top of another? Since its primary purpose is to provide alignment what strength is required? Well, it doesn’t have to be very strong unless you decide you want to hang your scaffold (as opposed to suspending a scaffold from a rope). Now the coupling pin must have sufficient strength to hold up the entire scaffold that’s hanging. Usually the coupling pin isn’t strong enough. And guess what– the bolts have to be strong enough too. May I suggest having a qualified person design that connection before you kill someone? By the way, don’t necessarily rely on the manufacturer; he/she may have no idea what to tell you.

As for those funny little connectors that secure a suspended scaffold wire rope to an anchor, its best to make sure that they are installed correctly. These connectors, whether u-bolts, fist grips, or swaged fittings, they all rely on friction. In this case, definitely follow the manufacturer’s recommendations for torque specifications since this is the key to safe use. And, don’t forget that the correct size and quantity of u-bolts or fist grips are required.

That brings us to the use of duct tape. Applicable standards and good engineering practice dictate that all connections must have adequate strength to support 4 times the anticipated load. If you can tell me the strength of duct tape in tension, I’ll be happy to design a suspended scaffold for your use. Will it be a single point or two point suspended scaffold platform that you want? Oh wait, I forgot that you want to go up and down with suspended scaffold. I think the hoist is going to be a tricky one to design! Perhaps we should stick (no pun intended) to something a little more conventional.

Thoughts for a New Year

By | OSHA Standards & Regulations, Resources, Scaffolding | No Comments

A stimulating and thought provoking discussion addressing safety concerns with scaffolding.

2012 will be an interesting year with the economy, presidential elections, wars, and unemployment weighing heavy on our minds.  In an effort to keep your mind off these depressing subjects, I thought it would be a good idea to focus on what you enjoy—scaffolding!  Well, it beats thinking about the economy tanking and besides, this is a magazine for scaffolding and access.

Have you ever wondered what would happen if everybody was perfect?  Scaffolds would be perfectly constructed and perfectly used by perfectly trained employees.  Now there’s something to think about.  Just think of the ramifications.  No angry jobsite safety monitors; no OSHA citations; no injuries; no deaths.  I wonder what that would do to the unemployment figures.

Why do people like to misuse and abuse scaffold components?  Take knee-outs and brackets as an example.  Why do erectors think knee-outs will support ten tiers of scaffold on top of them and why do users think brackets will hold a mountain of block and brick?

What would happen if we had no OSHA standards?  Would injuries and deaths increase, stay the same, or decrease?  What would the industry do?  What would you do?  Would you do anything differently?  What if there were no compliance officers?  Would it make any difference to your behavior?  Why do we not have one set of standards for the scaffold and access industry in this country?  For example, are the states so unusual that we have to have different standards in California and Michigan?  Why did Washington State rewrite the federal OSHA standards in a “friendly” prose?  Apparently nobody in Washington understood that the standards are not instructions but rather are minimum, enforceable requirements.

Why did the Army Corp of Engineers write a separate scaffold standard somewhat modeled after the federal regulations but yet sufficiently modified so that it is extra confusing?  It would almost seem that scaffolding and physics mutate into strange creatures from state to state and agency to agency.  This could get scary!

Why do we equate longevity with expertise?  You know, just because you have been doing something over and over doesn’t make it right.  And the opposite is true; how can a person fresh out of school be a consultant?  And then we have someone on TV who said: “I’m not stupid you know, I just don’t know stuff.”  Is there a way in 2012 to get scaffold users to know more stuff and increase their expertise?

Why do general safety consultants who have never erected a scaffold think they know more about an erection than a scaffold erector?  Why do some scaffold erectors think they are exempt from the accepted safety practices?  Why is everybody an expert in fall protection and scaffolding?  How can a compliance officer, fresh out of school, understand the 28 subparts of the OSHA Construction Standards?  Why do compliance officers get minimal training in scaffolding?

Why is the American Society of Safety Engineers the secretariat of the ANSI scaffolding standard and not the SIAI?  And here’s something to really ponder:  Has anyone measured the cost/benefit ratio regarding the extensive and some may argue oppressive, government intervention in the scaffold industry?

What will 2012 bring for you?  I wish for you a prosperous, enjoyable year and you experience a year of good health free of injury.

How Do They Fit?

By | Forming, OSHA Standards & Regulations, Resources | No Comments

A practical explanation as to the relationship between the OSHA standards, enforcement, compliance and safety in the construction industry.

It’s been a long time since I first became involved in the business of scaffolding.  My experience has included a lot of scaffolds, a lot of places and a lot of people.  It has also included a lot of regulations.  As a blossoming young engineer, I still recall asking by boss how OSHA fit into the design of scaffolding.  Since federal OSHA was just a couple of years old at that time, he responded with a clearly stated:  “I don’t know.”  Forty years later, it appears that we still don’t know how OSHA fits into the design, construction and use of scaffolding.   To be fair to federal OSHA, it doesn’t appear that any regulations, standards, codes or guidelines fit into the design of scaffolding.  Now, before you get yourself all wound up, this may be somewhat of an extremely broad statement.  But think about this:  We have standards regarding fall protection and more specifically guardrail systems.  In my research I have found guidelines regarding guardrails going back to the 1920’s, almost a century ago.  And we still have people designing, constructing and using scaffolds without fall protection.  If nothing else, we have consistency.

So what’s the problem?  Is it poor enforcement?  Is it poor training?  Is it poor knowledge?  Is it ignorance?  Or maybe we just don’t care.  Being a Professional Engineer, and accepting the responsibilities that go with the privilege, I am obligated to comply with the myriad of regulations, standards and codes that apply to the profession.  Not to do so will result in the loss of my license and opportunity to earn a living.  I don’t state this because I think I am special, but rather qualified professionals (degreed and licensed or not) accept the obligation that is or should be expected in the business.  I don’t agree with all the regulations; for that matter I’m not really keen on any of the regulations—it certainly stifles constructive creativity.  In fact, regulations are insidiously invading all aspects of our lives, resulting not only in a dumbing down of the industry but also in an erosion of expertise, efficiency, economy, and productivity.

Of course, those tasked with the enforcement of these regulations smugly point to the results of their policing actions.  They publish yearly results of their efforts as if those efforts have any real effect on the industry.  Frankly, the annual OSHA list of the top 10 violations has no relation to the degree of danger involved in the infraction.  For example, scaffolds always show up in the top ten, suggesting that there is a real problem with safety in the industry.  But is there a problem?  Perhaps scaffolding shows up so frequently because infractions are easy to spot and the compliance officers haven’t been trained to evaluate where the real hazards are.

One of the favorite activities these days is the harassment of professional scaffold erectors (casual erectors, where the problems really occur, seem to be immune.)  Statistics indicate that the death rate of professional erectors is extremely low, particularly when compared to the 80 annual deaths that occur with scaffold usage, the deaths in construction and more dramatically when compared with the approximately 37,000 people killed on the highways each year.

The situation is becoming so ridiculous due to what I think is a growing hysteria about safety and the lack of understanding of the actual hazards.  Enormous amounts of time and energy are uselessly spent deciding whether a regulation has been violated instead of investing in the safe productive work that should be happening.  How many times have you sat in a meeting ascertaining whether there is compliance with the regulations?  How many hours have been wasted bickering about the nuance of a regulation instead of determining how to get the work done safely?

I am not advocating the abolishment of enforcement but something has to change.  It is absolutely amazing how people think they are experts in erector fall protection, for example, and yet have never erected a scaffold in their lives.  And yet we give them the authority and take it away from the people most affected.  Furthermore, it is stunning to me how many government agencies, construction industry organizations, unions and engineering committees feel compelled to propagate more and more regulations, many applying to scaffolding, and yet do not even bother contacting the Scaffold and Access Industry Association or the Scaffold Shoring and Forming Institute for input.  Are you aware that the American Society of Civil Engineers has a code regarding construction loads which includes specifications for scaffold loading?  I didn’t think so.

I can sure complain about the problem but unfortunately I don’t have a snappy quick solution.  We cannot abolish decent standards and codes nor can we abolish enforcement—those are needed for those employers and employees who just don’t get it.  But we do need to abolish the politics in safety.  Have you ever wondered why we chase after the employer but not the employee?  Me too.  Have you ever wondered why compliance officers don’t receive sufficient training for the task at hand?  Me too.  Have you ever wondered why so many designers and constructors erect scaffolds without having any clue as to what a safe scaffold is?  Me too.  Have you ever wondered why we allow the sale of scaffolding in this country without any idea of its load capacity?  Me too.  Have you ever wondered why safety consultants have such a poor understanding of the true hazards in scaffolding?  Me too.

Forty years ago we were killing and maiming scaffold users.  We’re stilling doing it today.  And I still don’t know how OSHA fits into the safe design of scaffolding.  However, I do know what a safe scaffold is.  Do you?